The Third NPAFC-IYS Workshop on

Linkages between Pacific Salmon Production and Environmental Changes

MAY 23-25, 2020

Hakodate Research Center for Fisheries and Oceans, Hakodate, Japan

https://center.marine-hakodate.jp/en/

Workshop and Hotel Registration Due:

April 24, 2020
More information:

https://npafc.org/workshop-2020/
or email to secretariat@npafc.org

MAJOR TOPICS

- Salmon production in changing environments
- New technologies/integrated information systems for salmon research and management
- Resilience for salmon and people: lessons from the Great East Japan Earthquake in 2011

International Year of the Salmon (IYS)

is an international framework for collaborative outreach and research. Through outreach efforts the IYS will raise awareness of what humans can do to better ensure salmon and their habitats are conserved and restored against increasing environmental variability. For more information visit: https://yearofthesalmon.org/

HOSTED BY

The North Pacific Anadromous Fish Commission

Tel: +1-604-775-5550 E-mail: secretariat@npafc.org Website: https://npafc.org

PARTNERS

Fisheries Agency of Japan

Research Salmon
Organization Propagation
Association

Japan Fisheries Research and Education Agency Japan Salmon & Trout Resources Enhancement Association

North Pacific Marine Science Organization Tohoku Ecosystem-Associated Marine Sciences

The Third NPAFC-IYS Workshop on

Linkages between Pacific Salmon Production and Environmental Changes

Date: May 23–25, 2020

Venue: Hakodate Research Center for Fisheries and Oceans (20-5 Benten-cho, Hakodate, Hokkaido 040-0051, Japan; https://center.marine-hakodate.jp/en/)

Host: North Pacific Anadromous Fish Commission (NPAFC), https://npafc.org/Partners

- Fisheries Agency of Japan (FAJ), http://www.jfa.maff.go.jp/e/index.html
- Hokkaido Research Organization (HRO), http://www.hro.or.jp/en/index.html
- Hokkaido Salmon Propagation Association (HSPA), http://sake-masu.or.jp/
- Japan Fisheries Research and Education Agency (FRA), http://www.fra.affrc.go.jp/english/eindex.html
- Japan Salmon and Trout Resources Enhancement Association (JSTREA), http://www.honkei.jp/index.html
- North Pacific Marine Science Organization (PICES), https://meetings.pices.int/ (TBC)
- Tohoku Ecosystem-Associated Marine Sciences (TEAMS), http://www.i-teams.jp/e/index.html

Science Committee:

- Jun Aoyama (TEAMS, International Coastal Research Center, Atmosphere and Ocean Research Institute, Univ. Tokyo, Japan; IYS TCG-2)
- Ed Farley (Auke Bay Laboratory, NMFS, USA; SSC, IYS WG, TCG-1)
- Jim Irvine (Pacific Biological Station, DFO, Canada; SSC, IYS WG, TCG-1)
- Ju Kyoung Kim (Inland Life Resources Center, FIRA, Korea; SSC, IYS WG, TCG-1)
- Svetlana Naydenko (Pacific Scientific Research Fisheries Center, TINRO, Russia; SSC)
- Jeongseok Park (NPAFC Secretariat, Canada)
- Mark Saunders (IYS WG & NPSC chairs, Canada)
- Shigehiko Urawa, Chairperson (Hokkaido National Fisheries Research Institute, FRA, Japan; SSC chair, IYS WG, TCG-4)

Local Organizing Committee:

- Yasuyuki Miyakoshi (Central Fisheries Research Institute, HRO, Japan; IYS TCG-1)
- Kazushi Miyashita (Field Science Center for Northern Biosphere, Hokkaido Univ., Japan; IYS TCG-3)
- Havato Sanevoshi (Salmon and Freshwater Fisheries Research Institute, HRO, Japan)
- Shunpei Sato (Hokkaido National Fisheries Research Institute, FRA, Japan; IYS WG, TCG-3)
- Kengo Suzuki (Hokkaido National Fisheries Research Institute, FRA, Japan; IYS WG & NPSC, TCG-4)

Background:

Pacific salmon face many challenges and uncertainties associated with environmental variability such as climate change. It is more important than ever that we promote new international cooperative research that provides better scientific information on the ecological mechanisms regulating production of anadromous populations and climate impacts in North Pacific marine ecosystems.

The North Pacific Anadromous Fish Commission (NPAFC) and North Atlantic Salmon Conservation Organization (NASCO) are leading a major initiative entitled "International Year of the Salmon (IYS)". IYS provides an international framework for collaborative outreach and research. These efforts will raise awareness of the challenges salmon face for improved stewardship during this period of increased environmental variability.

The IYS overarching theme is "Salmon and People in a Changing World" with six subthemes: (1) Status of Salmon; (2) Salmon in a Changing Salmosphere; (3) New Frontiers; (4) Human Dimension; (5) Information Systems; and (6) Outreach and Communication. IYS is stimulating investment in research expected to provide a legacy of knowledge, data/information systems and tools, and help train a new generation of scientists better equipped to provide timely advice to improve stewardship of salmon. In addition, the IYS program is connected to the 2016-2020 NPAFC Science Plan, whose research themes are (1) Status of Pacific salmon and steelhead trout; (2) Pacific salmon and steelhead trout in a changing North Pacific Ocean; (3) New technologies; (4) Management systems; and (5)

Integrated information systems. Annual progress for each research theme is reviewed at a series of NPAFC-IYS workshops including the present one.

Workshop Objectives:

- Improve knowledge of the migration, growth and survival of salmon and their environments;
- Increase understanding of the causes of variations in salmon production in changing environments;
- Anticipate future changes in salmon ecosystems and resulting changes in the distribution, survival, and abundance of salmon;
- Discuss application of new and developing technologies and analytical methods to research and manage of salmon;
- Demonstrate integrated information/data management systems to support research, sustainable management, and understanding for the conservation of salmon; and
- Describe policies designed to ensure the resilience of salmon and people in changing environments.

Topic Sessions:

Topic 1. Salmon production in changing environments

Moderators: Ed Farley* (SC & TCG-1), Jim Irvine* (SC & TCG-1), Ju Kyoung Kim (SC & TCG-1), Svetlana Naydenko (SC), and Hiromichi Ueno (TCG-1) *session co-leader

The response of Pacific salmon to climate-driven environmental changes is variable and differs by species, populations, life stages, geographical locations, and/or seasonal timing. Variation in the early marine survival of salmon has been hypothesized to have a major role in determining brood year strength. However, there has been limited evidence to support this hypothesis. We need to understand the causes and mechanisms of mortalities at each stage of salmon life cycle. Climate change may result in significant variability and overall declines in the carrying capacity and usable habitat of Pacific salmon in the North Pacific Ocean, potentially leading to expanded use of the Arctic Ocean. An improved understanding of linkages between environmental changes and salmon production will help to project reliable forecasting of salmon distribution and abundance for the sustainable resource management.

1-1. Status and trends of key salmon populations and their environments

Time series of regional salmon production and biological and physical characteristics of key salmon populations and their ocean habitat provide broad scale perspectives necessary to examine the underpinnings of ocean salmon production and marine ecosystem conditions. The purpose of this subsession is to understand the current status and trends of Pacific salmon production and their habitat environments.

(**Keywords:** key salmon populations, trend, spawning escapement, catch, survival rate, body size, fecundity, smolt production, distribution, abundance, habitat conditions, and others)

1-2. Effects of freshwater habitat changes on salmon production

Physical changes to freshwater ecosystems resulting from human impacts and climate change will degrade and diminish available habitat, reduce reproductive success, and impact migration of salmon. Increasing water temperatures may cause direct and indirect impacts on salmon including physiological stress, increased depletion of energy reserves, increased susceptibility and exposure to diseases and disruptions to breeding efforts. The sub-session will: (1) review the impact of freshwater habitat changes on salmon production; and (2) evaluate effectiveness of habitat restoration programs to enhance resilience of salmon.

(**Keywords:** freshwater salmon habitat, human impact, climate change, reproductive success, growth, migration, physiological stress, diseases, mortality, restoration, resilience, and others)

1-3. Survival mechanism of juvenile salmon in changing ocean environments

There is growing recognition that size-dependent mortality of juveniles within the first ocean year regulates Pacific salmon production, which also suggests that environmental influences are greater in the first ocean year than later. The sub-session aims to increase our understanding of survival mechanism of juvenile salmon and their responses to changing environments including SST, salinity, currents, prey abundance, inter- and intra-specific competition, and predators.

(**Keywords:** juvenile salmon, marine survival mechanism, ocean entry, feeding, growth, migration, SST, salinity, currents, prey, competition, predators, and others)

1-4. Winter ocean ecology and survivals of Pacific salmon

One hypothesis is that winter is a critical period for Pacific salmon in the ocean, but winter surveys have been limited to test this hypothesis. Key gaps in our understanding of winter ocean ecology and survivals of salmon include: (1) winter ocean distribution and abundance by species and population, (2) ocean habitat environments including prey abundance, (3) key factors influencing winter distribution and abundance, (4) effects of changing winter environments on feeding, growth and metabolism, and (5) mechanisms determining winter survival. The international Gulf of Alaska expedition conducted in the winter/spring of 2019 was the first comprehensive survey of Pacific salmon this time of year in the North Pacific Ocean in several decades. Results from this expedition will be presented to fill gaps in our knowledge of winter salmon in the ocean. Other presentations on winter salmon ecology and survivals are welcome.

(**Keywords:** winter salmon, spatial and temporal dynamics of habitat conditions, stock-specific distribution and abundance, preys, food web, feeding, metabolism, growth, trophic and health conditions, survival mechanisms, and others)

1-5. Linkages between salmon production and climate/ocean changes

The future of salmon is uncertain. Climate change may increase variability in the carrying capacity and usable habitat (distribution) of salmon in the ocean. Improved understanding of linkages between environmental changes and salmon production will help anticipate the economic consequences of these changes. The objectives of the sub-session are to: (1) understand and quantify the effects of environmental variability and anthropogenic factors affecting salmon distribution and abundance; (2) develop methods to predict future changes in salmon distribution and abundance with climate change, and (3) predict implications of climate/ocean environmental changes on salmon management. (**Keywords:** climate impact, distribution, abundance, carrying capacity, linkage between salmon, climate and ocean changes, forecast models, energy budget models, biophysical models, and others)

1-6. Summary and discussion

Topic 2. New technologies/integrated information systems for salmon research and management **Moderators:** Kazushi Miyashita (TCG-3), Dion Oxman (TCG-3), Shunpei Sato (TCG-3), and Mark Saunders* (SC) *session leader

With recent advancements in technology, data processing, and analytical methods, new tools are available to better study and manage salmon. The IYS aims to further advance the development of new and emerging technologies and analytical methods that are immediately available for salmon research and management. In addition, the IYS seeks to create open-access information systems for salmon research and management, and to develop management systems to aid the sustainable conservation of salmon in a changing climate.

2-1. New technologies

Novel stock and fish identification methods including molecular analyses, genomics, environmental DNA (eDNA), hatchery mass marking, intelligent tags, and remote sensing, continue to be developed, and these tools are integral to the formulation of effective models predicting the distribution and abundance of salmon populations. This sub-session will emphasize: (1) eDNA as an indicator of salmon distribution and abundance in aquatic ecosystems; (2) use of existing scale and otolith collections to determine ocean distribution of salmon (otolith microchemistry) and analyses of growth patterns to examine size-dependent mortality hypotheses; (3) potential for the application of real-time GSI and detection of pathogens at sea; and (4) intelligent data logger and tacking methods to determine migration behavior and survivals.

(**Keywords:** genomics, environmental DNA, molecular identification, mass marking, intelligent tags, salmon observation systems, remote sensing, microchemistry, and others)

2-2. Integrated information and management systems

The IYS seeks to develop integrated information/data management systems using new and existing data sets to increase the resiliency of salmon and people in a changing world, and support research and

management as well as public understanding the role of salmon in ocean ecosystems. For the sustainable conservation of uncertain salmon populations, we need to develop integrated management systems including the ecosystem-based management, improved management strategies for harvest and escapements, long-term sustainable conservation of genetic units and diversity, restoration and protection of marine and freshwater habitat, control of diseases and pollution, resilient salmon enhancement/hatchery technologies, and application of indigenous and local/traditional knowledge. (**Keywords:** integrated information system, management strategy of harvest and escapements, genetic conservation, habitat restoration and protection, control of diseases and pollution, renovation of enhancement/hatchery technologies, indigenous and local/traditional knowledges and others)

2-3. Summary and discussion

Topic 3 (Special Session). Resilience for salmon and people: lessons from the Great East Japan Earthquake in 2011

Moderators: Jun Aoyama* (SC & TCG-2), Masahide Kaeriyama (TCG-1), and Shigehiko Urawa (SC & TCG-4) *session leader

The IYS is seeking to ensure that salmon and people are resilient to changing environments. The Great East Japan Earthquake (GEJE) on March 11, 2011 was devastating for salmon and people. It created a massive tsunami that killed more than 18,000 people and gravely damaged the coastal zone systems, including salmon habitats, hatcheries and fishery facilities along the Pacific coast of northern Honshu. Tohoku Ecosystem-Associated Marine Sciences (TEAMS) was launched in January 2012 as a decadelong project to clarify the impacts of the GEJE and the restoration process of marine ecosystems for the reconstruction of local subsistence and fishery industries. In conjunction with TEAMS, this special session is planned to review the impact of the GEJE on salmon, people and coastal ecosystems, and their recovery processes for human security and risk management. Lessons learned from this project should contribute to enhancing the resilience of salmon and people in the face of future challenges elsewhere.

3-1. Restoration of ecosystems and human society in the coastal zone systems

Salmon have a long historical association with local people in northern Honshu, being a vital resource for various aspects such as food, economy, recreation, culture and education. The GEJE damaged coastal ecosystems as well as human society connecting with salmon and other marine resources. Long-term monitoring surveys have been initiated by TEAMS to access changes in the marine ecosystems and human society affected by the GEJE. This sub-session introduces the outcomes of TEAMS to understand the process and mechanism of restoration in the coastal ecosystems and the recovery of human society.

(**Keywords:** coastal ecosystem, human society, impact of earthquake/tsunami, restoration, and others)

3-2. Research for retrieval and sustainable management of salmon populations

Chum salmon are an important fish resource in northern Japan, and most populations have been maintained by hatchery releases. This sub-session introduces research results of TEAMS in order to: (1) assess the impact of the GEJE and other factors on the behavior, survival and returns of chum salmon; and (2) review the procedure of recovery and sustainable management for chum salmon populations.

(**Keywords:** chum salmon, survival, impact of earthquake/tsunami, recovery procedure, sustainable management, and others)

3-3. Risk managements and sustainability for the coastal zone systems and salmon production

As a result of the huge tsunami, millions of tones of marine debris including live organisms were widely dispersed into the Pacific Ocean. Radioactive materials were also released into freshwater and marine environments from the damaged Fukushima Daiichi nuclear power plant. In addition, nonnative coho salmon escaped from broken net-pens in the coastal water. The sub-session intends to recommend: (1) the risk management approaches including the adaptive management, precautionary principle and feedback control between monitoring and modeling, and (2) sustainable processes for the coastal zone systems and salmon production from catastrophic disaster such as the GEJE and global warming effects.

(**Keywords:** risk management, adaptive management, monitoring, modeling, sustainable process, coastal zone system, salmon production, and others)

3-4. Summary and discussion: overview of lessons learned for future challenges

Oral and Poster Presentations:

The workshop will be conducted by oral and poster presentations in English. Sessions will be comprised of contributed presentations, which will be selected for oral or poster presentation.

Abstracts:

- ✓ Abstracts for oral and poster presentations must be received by the NPAFC Secretariat by e-mail (secretariat@npafc.org) no later than January 29, 2020 (extended from January 15).
- ✓ Abstracts must be prepared according to guidelines and sample format.
- ✓ The Science Committee will select abstracts by mid-February 2020, and authors will be notified of the results by the NPAFC Secretariat.
- ✓ Presenters who had their abstracts selected will receive guidelines for their oral or poster presentations and a formatting guide for extended abstracts from the NPAFC Secretariat.

Workshop Proceedings:

Oral and poster presenters are asked to submit an extended abstract. The extended abstracts will be compiled into the workshop proceedings and issued as a NPAFC Technical Report after the workshop. The Technical Report will be available online at the NPAFC website.

Key Dates for Workshop:

August 23, 2019: First announcement of workshop and call for papers
January 29, 2020: Abstract submission due (extended from January 15)
February 18, 2020: Announcement of abstract selection to authors
Early–March 2020: Second announcement of workshop and registrations

Early–March 2020: Workshop and hotel registrations open April 24, 2020: Workshop and hotel registrations due

May 23–25, 2020: Workshop

June 30, 2020: Extended abstracts due (Late submission of extended abstracts may not be

included in a Technical Report.)

Registration:

Regular Registration: US\$150

Student Registration: Free except for reception

Registration includes:

- Transportation (shuttlebus) between official hotel and venue
- Attendance all oral and poster sessions
- A program and abstract booklet
- Coffee/tea breaks
- Reception on May 23, 2020 (with fee 6,000 yen or US\$60 for students and companions)

**Space may be limited. Registration is accepted on a first come, first served basis. Late registrants may not receive a hardcopy of the workshop booklet due to limited supply.

For More Information Contact:

Jeongseok Park, NPAFC Deputy Director

Suite 502, 889 West Pender Street, Vancouver, BC, V6C 3B2, Canada

Tel: +1-604-775-5550, Fax: +1-604-775-5577

E-mail: secretariat@npafc.org; Website: https://npafc.org