Status of salmon Perspectives from the Pacific

A.R. Munro*, S. Grant, A. Vélez-Espino

*

Pêches et Océans Canada

Canada

Fisheries and Oceans

IYS Synthesis Symposium 4-6 October 2022

Working Group on Stock Assessment

Introduction

Salmon important shared resource

Environment (pasture) changing / more variable

Monitoring & understanding status is critical

What does the future look like?

How do we prepare and respond?

Pacific Salmon

Chukchi Sea

Sea of Okhotsk

Asia

Sea of Japan

• 7 species

• 4 major basins

Bering Sea

North Pacific

North America

Gulf of Alaska

Hatchery releases

- ~5 billion/yr
- Chum and pink
- US, Japan, Russia

• Working groups

Assessing Status of Pacific Salmon

Many challenges

- Various metrics & methods
- Data availability
- Jurisdictional policies & interests
- Coordination of data and information

	700 -	
	600 -	Commercial catch (number)
Millions of fish	500	
	500	
	400 -	
	300 -	
	200 -	
	100 -	
	0 -	
	1	925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
		= Fink = Chain = Sockeye = Cono = Chinook = Cherry = Steelileau

Data Source: North Pacific Anadromous Fish Commission (NPAFC). 2022. NPAFC Pacific salmonid catch statistics (updated June 2022).
North Pacific Anadromous Fish Commission, Vancouver. Accessed June, 2022. Available: https://npafc.org

Common metric: catch/harvest data

	Numbers	Weight	
Pink	70%	55%	
Chum	13%	24%	

Comparison of average annual Pacific salmon catch by statistical region 2017-2021 vs. 2007-2016

Comparison of average annual Pacific salmon catch by species & region 2017-2021 vs. 2007-2016

Many concerning trends in recent abundance (3-5 yrs.)

	Pink	Chum	Sockeye	Coho	Chinook	Masu	Steelhead
Canada		+	+		+	NA	NA
Japan	➡	➡	NA	NA	➡		NA
Russia	₽ №	+	➡		➡	-	NA
Korea	NA	+	NA	NA	NA	NA	NA
USA – AK	₽ №	+	S N		↓	NA	
USA – WA/OR/CA		➡	➡		➡	NA	➡

Example: Alaska Chinook Run Sizes – deviation from average (1997-2020)

Increase synchrony in productivity among stocks in NE Pacific (Dorner et al. 2017, CJFAS)

Example: Alaska Sockeye Run Sizes

N = 34 stocks

Inverse relationship between northern and southern stocks (Dorner et al. 2012, CJFAS)

Changes in demographic & biological traits

- shift to younger age at maturity
- decrease in length-at-age
- decrease in average weight

Ecosystem Changes & Impacts on Salmon – a complex story Highlights

Marine Ecosystem

- Marine heatwaves increase frequency
- Changing distribution of salmon and prey
- Thiamine deficiency (first identified in Baltic)

Marine Heatwaves

Freshwater Habitat

- Warming river temperatures
- Increased stress and risk of infection & disease
- > 18-20°C decreased survival migrating adults

Extreme Temperatures

Drought

What does this mean for management?

Managers and stakeholders face increasingly uncertain future

Reliable information is critical

- potential effects?
- species responses?

Good information allows

- resilient strategies
- nimble and proactive

Next Steps

- Continue investment in monitoring and assessment tools
 - Careful and consistent measurements
- Mobilize data (FAIR principles) & integrate environmental information

Investigate mechanisms that drive changes

- Consider what changes mean to salmon stocks (present & future)
 - Integration of knowledge systems including local and traditional knowledge and science
- Predict how stocks respond to changing "pasture"
 - future scenario planning

Improving integration of our salmon science and stories

Looking forward to future

What do we do with the Science?

- What is our role with these salmon & ecosystem stories?
- How do we motivate need for action? (e.g., need for greenhouse gas mitigation)
- How do we use our science to adapt salmon management systems to future climate change? (many talks at this Symposium)

