Environmental and biological factors influencing residence duration of wild sub-yearling Chinook salmon in a fjord estuary of the Salish Sea using micro-acoustic transmitters

> Stephanie Lingard^{1,2}, Arthur Bass¹, Katrina Cook³, Michelle Fortier³, Geoffrey Price³, Scott Hinch¹

> > steph_lingard@hotmail.com

UAMISH RI

¹Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Science, University of British Columbia ²Squamish River Watershed Society ³Instream Fisheries Research, Inc

Study Objectives

 Assess utility of novel acoustic telemetry technology for monitoring sub-yearling salmon movements

2. Investigate factors that may influence residence of sub-yearling chinook in estuaries

Study System

Squamish River:

- Coastal watershed (3,600 km²)
- Mean discharge: 300 m³s⁻¹

Chinook Salmon Populations:

- Summer native
 - Spawn: Aug- early Sept
 - Migrate as sub-yearlings and yearlings
- Fall different stock
 - Spawn: mid-Sept early Nov
 - Migrate as sub-yearlings

Squamish River Estuary

• Howe Sound is a fjord estuary

Innovasea 307 Hz Acoustic Telemetry System

- V3 307 Hz acoustic transmitter and HR3 receivers
 - Transmitter < 50% weight of V5 but similar dimensions
 - 100 day tag life with 3 5s transmission rate
 - Up to 100 m of range (depending on tide)

Field Method:

- Wild fish captured in river via beach seine
- River side surgical application of tags
- Fork length 67 to 95 mm (mean=77.8; SD= 6.7)

Howe Sound

Holding Study

Objective: examine effects of tagging on short term survival

- Dummy tagged (*n*=10) and control (*n*=10)
- Fish held in river for 7 days
- Mortality: 10% (*n*=1) dummy tagged fish died in the first 24 hours

Defining Residency

Fish released in the estuary (n=49) \uparrow

- South receivers last: successful (59%)
- Central receivers last: successful (14%)
- North receivers last: unsuccessful (27%)
- 36 inferred to be successful (73%)

Residency Duration

Non-Parametric Survival Analysis (Cox Regression)

• Median residence time:

11.2 days
(95% CI: 6.8 - 15.5)

- Residence duration range
 - 12 hours to 43 days

Influence of Factors on Residence

Null (stochasticity)

Environmental Variables

- Salinity
- Tide direction
- Temperature
- Minimum water depth

Biological Variables

- Fish length
- Growth rate
- Day of release

Influence of Factors on Residence

Model with Tide Direction fit data best

• No others with in with $\Delta AIC < 7$

Hazard Ratio (similar to odds ratio):

- Fish were 79% more likely to leave the estuary on an ebb tide
- Only in first 3.5 days

Key Points

One of the first acoustic telemetry tracking studies of wild sub-yearling salmon

- High inferred survival (73%) of estuary released fish
- High survival in holding study (90%)

Key Points

Median estuary residence was 11.2 days

- Squamish Estuary likely a stop-over habitat for sub-yearlings 67-95 mm
- Expanding concept of 'estuary' may be appropriate in fjord systems

Key Points

Tide (current) direction in the first few days of residence influences habitat use

 Highlights importance of habitat connectivity and operation of flood protection structures in estuaries

Extra Slides

Tag Burden

17