The Likely Suspects Framework for Atlantic salmon: cooperatively building the foundations for a life-cycle approach to guide future management

**Colin Bull** 

**Missing Salmon Alliance** 

Biological and Environmental Sciences University of Stirling Stirling FK9 4LA , UK

colin@atlanticsalmontrust.org https://doi.org/10.1093/icesjms/fsac099 https://missingsalmonalliance.org/likely-suspects-framework-home





## Likely Suspects Framework for Atlantic salmon

Aim : Providing an intellectual and resourcing framework to assist cooperative research into salmon mortality drivers

#### Objective :

Providing salmon managers with access to high value decision-support advice that considers the efficacy of their management activities within the context of other factors at play (i.e. taking a full lifetime survival view)



Bull, C D, Gregory, S D, Rivot, E, Sheehan, T F, Ensing, D, Woodward, G, Crozier, W. 2022. The likely suspects framework: the need for a life cycle approach for managing Atlantic salmon (*Salmo salar*) stocks across multiple scales, *ICES Journal of Marine Science*, fsac099, https://doi.org/10.1093/icesjms/fsac099



So what ?

Help inform stock assessment, develop new management support tools (expectation management) and possible coordinated responses

NASCO-ICES WKSALMON workshop series: To advance knowledge of at-sea mortality in salmon and lead to more accurate stock assessment

Explore how best to integrate available data on salmon, specifically data on marine survival for use in models

Enable the provision, collation and standardisation of salmon data that are currently unavailable.

- WKsalmon 1– data sources (June 2019)
- WKsalmon2 questions and data mobilisation (August 2022)
- WkSalmon3 .....









## Current work packages

1. Knowledge exchange hub mobilising environmental and biological data for salmon science and management (SalHub)

2. An analytical mortality framework

3. Interactive salmon management tool providing whole life-cycle context, and scenario testing

4. Explore ecosystem indicators linked to salmon survival prospects

### Developing and prioritising marine mortality hypotheses: identifying knowledge requirements (WKSALMON2)

| Hypothesis and<br>possible factor | Sub-<br>hypothesis | Possible mechanism                                                                                                     | Climate<br>change<br>drivers-<br>ocean and<br>atmosphere | Salmon<br>marine<br>distribution | Salmon<br>marine<br>growth and<br>condition | Salmon<br>freshwater<br>growth and<br>condition | Smolt<br>migration<br>phenology | Predator<br>popn<br>dynamics<br>and feeding<br>behaviours | Prey<br>availability<br>and quality | Competitor<br>popn<br>dynamics | Commercial<br>fishing<br>pressure | Salmon<br>farming<br>data | Fish<br>diseases |
|-----------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------|-----------------------------------------------------------|-------------------------------------|--------------------------------|-----------------------------------|---------------------------|------------------|
| 1 Predation                       | 1a                 | Increased predation pressure                                                                                           |                                                          |                                  |                                             |                                                 |                                 |                                                           |                                     |                                |                                   |                           |                  |
|                                   | 1b                 | Post-smolts in poorer physiological state are more susceptible to predation                                            |                                                          |                                  |                                             |                                                 |                                 |                                                           |                                     |                                |                                   |                           |                  |
|                                   | 1c                 | Smaller post-smolts are more susceptible to predation                                                                  |                                                          |                                  |                                             |                                                 |                                 |                                                           |                                     |                                |                                   |                           |                  |
| 2 Growth                          | 2a                 | Variation in the quality and quantity of suitable prey                                                                 |                                                          |                                  |                                             |                                                 |                                 |                                                           |                                     |                                |                                   |                           |                  |
|                                   | 2b                 | Increased competition for available prey                                                                               |                                                          |                                  |                                             |                                                 |                                 |                                                           |                                     |                                |                                   |                           |                  |
|                                   | 2c                 | Mis-match between initial marine migration phenology and availability of prey resources                                |                                                          |                                  |                                             |                                                 |                                 |                                                           |                                     |                                |                                   |                           |                  |
|                                   | 2d                 | Energetic costs in marine phase increasing                                                                             |                                                          |                                  |                                             |                                                 |                                 |                                                           |                                     |                                |                                   |                           |                  |
|                                   | 2e                 | Smaller post-smolts have less energy<br>storage and lower resilience during<br>period/s of reduced feeding opportunity |                                                          |                                  |                                             |                                                 |                                 |                                                           |                                     |                                |                                   |                           |                  |
| 3 Disease                         | 3a                 | Cumulative stressors increasing disease severity                                                                       |                                                          |                                  |                                             |                                                 |                                 |                                                           |                                     |                                |                                   |                           |                  |
| 4 Salmon<br>aquaculture           | 4a                 | Increased mortality risk resulting from<br>aquaculture mediated ectoparasite<br>encounters                             |                                                          |                                  |                                             |                                                 |                                 |                                                           |                                     |                                |                                   |                           |                  |
| 5 Fisheries                       | 5a                 | Variation in the incidence and severity of<br>commercial by-catch                                                      |                                                          |                                  |                                             |                                                 |                                 |                                                           |                                     |                                |                                   |                           |                  |

### Developing marine mortality hypotheses (WKSALMON2)





## 1. The Salmon Ecosystem Data Hub (SalHub)

An online portal providing a unique platform for Atlantic salmon knowledge mobilisation

Context Specific Metadata Catalogue

- Reduces the friction to metadata publishing
- Incremental Data Mobilisation (towards FAIR data)
- Provides a focus for accessing diverse knowledge resources across the Atlantic salmon life-cycle.

Diack *et al.*,2022 Enhancing data mobilisation through a centralised data repository for Atlantic salmon (Salmo salar L.): Providing the resources to promote an ecosystem-based management framework. <u>https://doi.org/10.1016/j.ecoinf.2022.101746</u>

## The Salmon Ecosystem Data Hub (SalHub)

### Interoperable Metadata



https://knb.ecoinformatics.org/ https://cran.r-project.org/web/packages/dataone/index.html https://eml.ecoinformatics.org/



### Simplified representation of index structure

# *Represents a starting point for cooperative future development*

https://shiny.missingsalmonalliance.org/SalHub/

## Organising and mobilising data sources : variable classes established within The Salmon Ecosystem Data Hub (SalHub)

| Hypothesis and possible factor | Sub-<br>hypothesis | Possible mechanism                                                                            | Climate<br>change<br>drivers-<br>ocean and<br>atmosphere | Salmon<br>marine<br>distribution    | Salmon<br>marine<br>growth and<br>condition | Salmon<br>freshwater<br>growth and<br>condition    | Smolt<br>migration<br>phenology            | Predator<br>popn<br>dynamics and<br>feeding<br>behaviours | Prey<br>availability<br>and quality               | Competitor<br>popn<br>dynamics                             | Commercial<br>fishing<br>pressure | Salmon<br>farming data           | Fish diseases                    |
|--------------------------------|--------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|---------------------------------------------|----------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------|
| 1 Predation                    | 1a<br>1b           | Increased predation pressure<br>Post-smolts in poorer physiological state                     | Air<br>Temperature                                       | Tagging,<br>Marking and<br>Tracking | Growth Rate<br>From Scales                  | Growth Rate<br>From Scales                         | Fish Population<br>Dynamics and<br>Ecology | Fish Population<br>Dynamics and<br>Ecology<br>(predator)  | Fish Population<br>Dynamics and<br>Ecology (Prey) | Fish Population<br>Dynamics and<br>Ecology<br>(competitor) | Commercial<br>Fishing Bycatch     | Fish Parasites,<br>Pathogens and | Fish Parasites,<br>Pathogens and |
|                                | 1c                 | are more susceptible to predation<br>Smaller post-smolts are more susceptible<br>to predation | Salinity (marine surface)                                | Targetted<br>Harvest Fishery        | Abundance<br>(pfa)                          | Prey Indices<br>(freshwater)                       | Migration<br>Timings (smolt<br>emigration) | Mammal<br>Population<br>Dynamics and<br>Ecology           | Phytoplankton<br>Biomass and<br>Diversity         | Avian<br>Population<br>Dynamics and<br>Ecology             | Targetted<br>Harvest Fishery      |                                  | Jisease                          |
| 2 Growth                       | 2a                 | Variation in the quality and quantity of suitable prey                                        | Salinity (marine                                         |                                     | Age Structure                               | Abundance<br>(iuvenile                             | Abundance                                  | Avian<br>Population<br>Dynamics and                       | Zooplankton<br>Biomass and                        |                                                            |                                   |                                  |                                  |
|                                | 2b                 | Increased competition for available prey                                                      | subsurface)                                              |                                     | (pfa)                                       | standing stock)                                    | (smolt)                                    | Ecology                                                   | Diversity                                         |                                                            |                                   |                                  |                                  |
|                                | 2c                 | Mis-match between initial marine migration<br>phenology and availability of prey<br>resources | Water<br>Temperature<br>(marine<br>surface)              |                                     | Sex Ratio (pfa)                             | Maturation<br>Rate (juvenile<br>standing stock)    | Age Structure<br>(smolt)                   |                                                           | lchthyoplankto<br>n Indices                       |                                                            |                                   |                                  |                                  |
|                                | 2d                 | Energetic costs in marine phase increasing                                                    | water<br>Temperature<br>(marine                          |                                     | Maturation                                  | Age Structure<br>(juvenile                         | Condition                                  |                                                           |                                                   |                                                            |                                   |                                  |                                  |
|                                | 20                 | storage and lower resilience during period/s of reduced feeding opportunity                   | Subsurface)<br>Currents<br>(marine                       |                                     | Rate (pra)                                  | Condition<br>(juvenile                             | Nutritional                                |                                                           |                                                   |                                                            |                                   |                                  |                                  |
| 3 Disease                      | 3a                 | Cumulative stressors increasing disease severity                                              | Currents                                                 |                                     |                                             | Nutritional                                        |                                            |                                                           |                                                   |                                                            |                                   |                                  |                                  |
| 4 Salmon<br>aquaculture        | 4a                 | Increased mortality risk resulting from<br>aquaculture mediated ectoparasite<br>encounters    | (marine<br>surface)<br>Water<br>Tomporaturo              |                                     |                                             | State (juvenile<br>standing stock)<br>Health State | Health State<br>(smolt)                    |                                                           |                                                   |                                                            |                                   |                                  |                                  |
| 5 Fisheries                    | 5a                 | Variation in the incidence and severity of<br>commercial by-catch                             | (freshwater)<br>Hydrology<br>(freshwater)                |                                     |                                             | standing stock)<br>Sex ratio<br>(juvenile          | (smolt)                                    |                                                           |                                                   |                                                            |                                   |                                  |                                  |

INPUTS Starting number of eggs N(0) Scenario parameters

MODEL INITIALISATION Define stages Fixed parameters Baselines durations & mortalities for each stage Make results structure 2. The underlying mortality framework

- Stage-state base model
- Specified stage durations and target (typical) size and weight ranges per stage
- Density-dependent, density-independent and size-dependent survival elements
- User controlled pathways (choices to reflect observations)

### 3: Building a management decision support tool

INPUTS - These are the user defined "levers".

- Effects upon on stage-specific growth rate and survival
- Act as multipliers or additions to model default parameters OUTPUTS-These can be used to derive other outputs of interest and consider "what-if" scenario testing

APPLY THE BIOLOGY Egg development Growth Mortality CHECK AND TEST RESULTS Map results onto required output structure

OUTPUTS Adult returns Egg deposition

## Building a management decision support tool



- Creates a user archive to save multiple scenarios
- Outputs can represent current marine conditions and possible ranges of effects and management "levers" on whole lifetime success
- Linkages to SalHub knowledge resources
- Provides a framework for expansion: loop in models representing specific situations / mechanisms/ groups



Outputs



4. Ecosystem indicators linked to salmon survival prospects

### Aims:

 Provide evaluation of possible ecosystem indicators (physical and biological) for salmon survival during early marine phase

### Delivering :

- Collation and synthesis of new ecosystem time series data resources
- Assessment of the importance of the abundance, composition and timing of prey resources at sea.
- Exploration of the potential role of additional factors (both marine and freshwater) on marine survival patterns



### emma.tyldesley@strath.ac.uk



#### Trends in available zooplankton energy 1958-2018

Using zooplankton survey data: providing energy for larval fish (prey) neil.banas@strath.ac.uk



https://www.cprsurvey.org/

Modelling approach of initial migratory routes of post-smolts from selected UK rivers. Shelf edge start, neg rheotaxis with northwards component, 1993

Shelf edge start, neg rheotaxis with northwards component, 2003





### aislinn.borland@strath.ac.uk



Shelf edge start, neg rheotaxis with northwards component, 1993





## Next steps for the Missing Salmon Alliance Likely Suspects Framework initiative

- Deliver agreed workplan
- Demonstrate value and opportunities to salmon managers
- Promote cooperative development of resources
- Secure continuing support

### Thankyou for your attention

















https://missingsalmonalliance.org/likely-suspects-framework-home

Colin Bull Neil Banas Emma Tyldesley Aislinn Borland Graeme Diack Nigel Milner Walter Crozier colin@atlanticsalmontrust.org neil.banas@strath.ac.uk emma.tyldesley@strath.ac.uk aislinn.borland@strath.ac.uk graeme@atlanticsalmontrust.org N.Milner@apem.co.uk