

Life on the high seas: new insights into the marine distributions of Pacific salmon

JOE LANGAN

CURRY CUNNINGHAM, JORDAN WATSON, & SKIP MCKINNELL

jalangan@alaska.edu Twitter: @ja_langan

Motivation

Knowledge of Pacific salmon marine distributions important for assessing:

- Influence of marine conditions on growth and survival
- Species interactions
- Locations of likely IUU fishing activities

There is not yet a full, quantified understanding of marine distributions • The "black box"

Goal: develop baseline ocean distribution models for 6 salmon species • Sockeye, chum, pink (even & odd years), coho, Chinook, steelhead

Methods

INPFC/NPAFC high seas catch data (1953-Present)

- Limited to gillnet/longline sets and April-August: **17,069 observations**
- 1955-2008

Data Distribution

Gear • Gillnet • Longline

Methods

INPFC/NPAFC high seas catch data (1953-Present)

- Limited to gillnet/longline sets and April-August: **17,069 observations**
- 1955-2008
- Biological data available for a subset of sets

Nested generalized additive models (GAMs)

- Response variable: Log(CPUE+1)
- Tweedie-distributed errors
- Controlled for spatially varying gear effects and abundance trends over time

1) $Log(CPUE + 1) \sim Gear + f_{gear}(Lat, Lon) + f(Year) + f(Lat, Lon)$

Nested GAMs

1) Control variables + average spring-summer spatial distribution (base model)

2) Add SST effect

- 3) Add seasonal (monthly) effect
- 4) Add spatially-varying SST effect

Compared models with % deviance explained, BIC, 10-fold cross-validation

Chum Base Model

Coho Base Model

Steelhead Seasonal Distribution

Chinook Seasonal Distribution

"Zoomed In" June-July Chinook Model

May-September 2009 Mean Chl-a

SST Preferences by Species

Transparent bars: 80% HDI ≈ "Preferred Range"

Solid bars: 50% HDI \approx "Core Range"

Preferred upper bound: 11.5-12.7°C

Preferred lower bound: 1.3-6.3°C

Variation primarily in cold tolerance

Estimated thermal niche corresponded to distribution patterns and SST sensitivity

May: Sockeye vs Coho

July: Sockeye vs Coho

SST Preferences by Latitude

Species — Sockeye

SST Preferences by Latitude

SST Preferences by Latitude

Variable, minor model improvement across species

Conclusions

Diverse species-specific distributions in the North Pacific

Ecological features contribute to distribution patterns

Large seasonal shifts in distribution

• Due in large part to temperature preferences

Species exhibit differing temperature preferences and sensitivity

- Variation primarily in cold tolerance
- Distribution sensitivity related to thermal niche breadth
- Evidence of (small) differences in temperature preference by latitude

Observed changes in temperature patterns likely impacted distributions

Next steps: machine learning approach to predict distribution patterns

Twitter: @ja_langan

Questions?

Diverse species-specific distributions in the North Pacific

Ecological features contribute to distribution patterns

Large seasonal shifts in distribution

• Due in large part to temperature preferences

Species exhibit differing temperature preferences and sensitivity

- Variation primarily in cold tolerance
- Distribution sensitivity related to thermal niche breadth
- Evidence of (small) differences in temperature preference by latitude

Observed changes in temperature patterns likely impacted distributions

Next steps: machine learning approach to predict distribution patterns

jalangan@alaska.edu

Nested GAMs

Control Variables (C*): Gear + te(Lat,Lon, by=Gear) + s(Year, k=# of years) 1) C* + te(Lat,Lon)

2) $C^* + te(Lat, Lon) + s(SST)$

- 3) C* + te(Lat,Lon) + s(SST) + te(Lat,Lon,Month)
- 4) C* + te(Lat,Lon) + s(SST) + te(Lat,Lon,Month) + s(Lat, by=SST)

Compared with % deviance explained, BIC, 10-fold CV

Salmon Catch Rates in NPAFC Surveys

Temperature Preferences

Observations By Year

Gear

Gillnet

Longline

Potential Distribution Shift: Coho

Distribution Sensitivity to SST

Why can't we test for distribution shifts?

Why can't we test for distribution shifts?

Sockeye Model Fit

Pink-Even Year Data Model Fit

Pink-Odd Year Data Model Fit

Norton Sound Chinook

Steelhead Model Fit

Local Index of Colocation

