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A Likely Suspects Framework case study

Bull et al., 2022

LSF Work Package 4:

Using freshwater and marine 
data to develop indicators for 
marine mortality during early 
marine phase.

First part: prey availability.



Case study rivers
Total (1SW + MSW) return rate (%)
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The rivers show synchrony in their returns



A post-smolt’s view of the marine 
environment: resolving the food web



A post-smolt’s view of the marine 
environment: resolving the food web

Little data. Assessments give 
SSB and R, not larvae eaten 
by post-smolts.



A post-smolt’s view of the marine 
environment: resolving the food web

Little data on forage fish prey. 
Assessments give SSB and R, not 
larvae eaten by post-smolts.

From satellite chl and ocean model primary 
production (e.g. Olmos et al., 2020)



A post-smolt’s view of the marine 
environment: resolving the food web

Continuous Plankton Recorder (https://www.cprsurvey.org):
Species list representing diet of forage fish larvae.
Correct for catchability and energy content (Olin et al., 2022).
=> zooplankton prey energy.

https://www.cprsurvey.org/


Zooplankton prey energy has declined over 
large parts of the NE Atlantic

Note: Trend only calculated where there are 40+ 
years of CPR data including pre-1980 and post-
2000.

Trend is m, where log10(energy+1) ~ m * year + c

· indicates p<0.05  

Larger spatial context of change.

Fractional change per decade:
total zooplankton prey energy (kJ.m-2)

  24°W 
  16°W    8°W    0°     8°E 

  42°N 

  48°N 

  54°N 

  60°N 

  66°N 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8



Zooplankton energy has declined in salmon 
post-smolt migration space-time domains
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Zooplankton prey energy during migration is 
correlated with salmon returns

• West cluster returns strongly correlated with Z energy west of UK and 
Ireland.

• East cluster returns strongly correlated with Z energy along North Sea 
route.

• South cluster returns not correlated with Z energy in any part of the 
migration route.
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Zooplankton prey energy during migration is 
correlated with salmon returns

• West cluster returns strongly correlated with Z energy west of UK and 
Ireland.

• East cluster returns strongly correlated with Z energy along North Sea 
route.

Corr between total  Z energy & east rtns (int =0; lag =0yrs; n>=10)
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Ecosystem-integrated zooplankton prey 
energy is correlated with salmon returns

West returns significantly correlated with Z 
energy:
• in blue whiting spawning region during 

migration
• in wider offshore sub-polar gyre influenced 

region integrated over several years.

Z energy in SPG area integrated over previous 3 yrs & west returns
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Fractional change per decade:
total zooplankton prey energy (kJ.m-2)
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And some negative results…

Low time series overlap in Norwegian Sea. 
Shared feeding area. Critical data gap!

South returns not significantly correlated 
with any version of Z energy. Why not?

On-shelf vs. off-
shelf influence?



The challenge - what explains variability and 
trends in zooplankton energy?
For example:

• SST has increased 

• (but not along most of migration route)

Use of ocean model hindcast AMM7 NEMO-ERSEM:
• Physical - biogeochemical
• ~7 km resolution
• Hosted by Copernicus (CMEMS)
• 1993-2021

Trend in AMM7 
SST

 1993-2020; . indicates p<0.05
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The challenge - what explains variability and 
trends in zooplankton energy?
For example:

• The spring phytoplankton bloom has got earlier and longer 

• Summer chl has declined and phytoplankton community size composition may be shifting (e.g. Schmidt et 
al., 2020)



The challenge - what explains variability and 
trends in zooplankton energy?
For example:

• Shifting influences of water masses and associated zooplankton assemblages 

subtropical

subpolar

shelf-edge current



Making predictions:

Can we develop a practical forecasting 
ability on year-to-year timescale and 
under climate-scenario projections?

Conclusion: zooplankton prey energy could be a 
powerful indicator of changes in salmon returns

Fractional change per decade:
total zooplankton prey energy (kJ.m-2)
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Thank you for listening!
The Likely Suspects Framework is a Missing Salmon Alliance project 
(https://missingsalmonalliance.org).

Thank you to these organisations for smolt run timing and returns data:

Agri-Food and Biosciences Institute; Irish Marine Institute; Inland Fisheries Ireland; 
Environment Agency; Marine Scotland Science; Cefas; Natural Resources Wales; Game and 
Wildlife Trust; National Research Institute for Agriculture; Food and Environment France.

Thank you to David Johns for CPR data.
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