The early marine distribution of Atlantic salmon in the Northeast Atlantic: A genetically informed stock specific synthesis

John Gilbey, Vidar Wennevik, Kjell Utne, Philip McGinnity, Eric Verspoor

International Year of the Salmon Synthesis Symposium Vancouver, Canada.

4 October, 2022

Introduction

Received: 2 December 2020

Revised: 27 May 2021 Accepted: 3 June 2021

DOI: 10.1111/faf.12587

ORIGINAL ARTICLE

The early marine distribution of Atlantic salmon in the Northeast Atlantic: A genetically informed stock-specific synthesis

John Gilbey¹ Kjell Rong Utne² | Vidar Wennevik² | Alexander Christian Beck² | Kyrre Kausrud³ | Kjetil Hindar⁴ | Carlos Garcia de Leaniz⁵ | Corrine Cherbonnel⁶ | Jamie Coughlan⁷ | Tom F. Cross⁷ | Eileen Dillane⁷ | Dennis Ensing⁸ | Eva García-Vázquez⁹ | Lars R. Hole¹⁰ | Marianne Holm² | Jens Christian Holst¹¹ | Jan Arge Jacobsen¹² | Arne J. Jensen⁴ | Sten Karlsson⁴ | Niall Ó Maoiléidigh¹³ | Kjell Arne Mork² | Einar Eg Nielsen¹⁴ | Leif Nøttestad² | Craig R. Primmer¹⁵ | Paulo Prodöhl¹⁶ | Sergey Prusov¹⁷ | Jamie R. Stevens¹⁸ | Katie Thomas¹³ | Ken Whelan^{19,20} | Philip McGinnity^{7,13} | Eric Verspoor²¹

Why increasingly poor survival of Atlantic salmon at sea?

DER INTERNETIONAL COLINES FOR THE EXPLORETION OF THE BER DEM CONTRA INTERNETIONAL POUR L'EXPLORATION OF LE MER "Knowing the distribution of marine animals is central to understanding climatic and other environmental influences on population ecology."

MacKenzie et al. (2011). Scientific Reports | 1:21 | DOI: 10.1038/srep00021

Why increased mortality at sea?

To answer question need to take a step back -

Need to describe/define as accurately as possible the theatre (location) of action – or 'domains' as Crozier e al. 2018 proposed recently

Provide focus for spatially and temporally targeted analyses of potential explanatory variables - physical, chemical, biological/ecological descriptions of the environment

Move from theoretical ideas about distribution to the real knowledge

Two important initiatives (SALSEA-Merge) more recently (SeaSALAR)

Concentrate on two areas – early post-smolts and stock specific ID

Atlantic salmon mortality at sea: Developing an evidence-based "Likely Suspects" Framework

Walter Crozier, Ken Whelan, Mathieu Buoro, Gerald Chaput, Jason Daniels, Sue Grant, Kim Hyatt, James Irvine, Niall Ó'Maoiléidigh, Etienne Prévost, Etienne Rivot, Ian Russell, Michael Schmidt and Brian Wells

Why focus on post smolts?

Why focus here on post smolts?

Definition of a post smolt? Time of entry into sea to end of calendar year – here **early summer** was the focus - **May**, **June**, **July**, **August**;

Reasonable to presume period of highest vulnerability (mortality) – small animals typically in early summer about 25-35 cm

Likely to be heavily influenced by and likely evolved to exploit oceanic conditions - Dingle, H., & Drake, V. A. (2007). What is migration? *BioScience*, *57*(2), (e.g. piggy- back ocean currents; Dadswell et al. 2010 – 'Merry go round hypothesis);

First environments encountered on leaving river (not confounded by multiple environments or life history transitions accumulated by older life history stages) – simpler to get handle on fish ecosystem relationships

Considerable amount of information already known about distribution of summer post smolts in the NE Atlantic ICES Journal of Marine Science, 63: 1488-1500 (2006) doi:10.1016/j.icesjms.2006.06.004

Feeding of Atlantic salmon (*Salmo salar* L.) post-smolts in the Northeast Atlantic

Monika Haugland, Jens Christian Holst, Marianne Holm, and Lars Petter Hansen

Why stock specific?

Geography: travel distances (35° latitude, ~2,500Km); timing of sea entry (varies by 90 days across NE Atlantic)

Global Change Biology (2014) 20, 61-75, doi: 10.1111/gcb.12363

Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (*Salmo salar*)

JAIME OTERO*, JAN HENNING L'ABÉE-LUND†, TED CASTRO-SANTOS‡,

Evolved traits (important adaptations in contemporary marine environments among individual genetically distinct river populations)

- Phenological sea entry time
- Morphological (age and size mouth gape swimming speed and capacity – carry over from river environments)
- Migratory behaviours sensitivity to magnetic fields, direction finding
- Inherent growth rate
- Metabolic potential (SMR, MMR, AS) energy acquisition, defence and use
- Immunological
- Predator avoidance shoaling
- Phylogenetic (legacy evolved traits to historical environments)

DOI: 10.1111/jbi.13097

RESEARCH ARTICLE

WILEY Journal of Biogeography

Ice sheets and genetics: Insights into the phylogeography of Scottish Atlantic salmon, *Salmo salar* L.

Genetic Stock Identification

Establishing a baseline (Gilbey et al. 2018)

Assignment Groups - Phylogenetic lineages

- 1 .

Markers (Analogous to physical markers)

Statistically derived assignments rather than absolute – so quality of assignment will be a function of the quality of the baseline, which depends on coverage and molecular differentiation of the elements Every fish collected (large numbers) delivers information (with geolocation)

Other methods.....

Sampling post-smolts at sea

Scientific pelagic cruises

Sampling coverage

Here's where the project took hold

- 4.75 million Km²
- 385 marine cruises
- 10,202 ind. trawls
- Sampled over 3 decades
- 9,269 post smolts
- 3,423 assigned to regional stock group

Trawl-station density

Catch per unit effort (CPUE)

Key observation: Where fish were 'not found' rather than where they were found

Migration routes & feeding aggregations

Physiography (ocean habitat)

Seem to be able to get off the ocean current highway

Biological insights (stock specific ocean use)

What you expect to see v what you actually see (Observed v Expected)

WORKING GROUP ON NORTH ATLANTIC SALMON (WGNAS)

		Northern NEAC						Southern	NEAC	NEAC Area					
Y	/ear	Finland	Iceland (N&E)	Norway	Russia	Sweden	Northern NEAC (5%; 95%)	France	Iceland (S&W)	Ireland	UK(EW)	UK(NI)	UK(Scot)	Southern NEAC (5%; 95%)	NEAC (5%; 95%)
1	Aean .0- ear	32 124	18 282	262 295	123 661	6 521	446 925 (390 263; 514 320)	16 291	49 972	233 168	52 464	48 823	317 189	747 477 (596 070; 966 664)	1 198 029 (1 022 016; 1 435 065)

Table 3.3.4.3. Estimated pre-fishery abundance of maturing 1SW salmon (potential 1SW returns) by year for NEAC countries (50% quantile of the Monte Carlo distribution only) and region (50% (5%; 95%) quantiles of the Monte Carlo distribution).

	Northern NEAC						Southern NEAC							NEAC Area
Year	Finland	Iceland (N&E)	Norway	Russia	Sweden	Northern NEAC (5%; 95%)	France	iceland (S&W)	Ireland	UK(EW)	UK(NI)	UK(Scot)	Southern NEAC (5%; 95%)	NEAC (5%; 95%)
Mean 10- year	30 012	8926	411 962	115 225	15 435	584 080 (479 508; 711 449)	13 746	8 768	34 458	150 296	11 045	394 464	628 259 (450 087; 885 019)	1 216 996 (968 475; 1 539 364)

Table 3.3.4.4. Estimated pre-fishery abundance of non-maturing 1SW salmon (potential MSW returns) by year for NEAC countries (50% quantile of the Monte Carlo distribution only) and region (50% (5%; 95%) quantiles of the Monte Carlo distribution).

Need higher resolution – can go back to individual river published catch (rod) data

Statistics for England and Wales, 2015

Including declared catches for salmon, sea trout, eels, smelt and lamprey by rods, nets and other instruments February 2017

Home / Agriculture, forestry, hunting and fishing / Fishing / Sea catches of salmon and sea trout

Scottish Salmon and Sea Trout Fishery Statistics

Official Statistics

- The salmon and sea trout fishery statistics are published by Scottish Government in accordance with the Code of Practice for Official Statistics. Fishery statistics for a given season are published in the following April.
- Salmon Conservation Regulations The Scottish Government has introduced a range of measures designed to improve the conservation status of wild salmon by managing their exploitation through fishing within Scotland's domestic waters. These regulations will have an effect on the catch and effort data reported by Scottish salmon fisheries.

Sea catches of salmon and sea trout

Updated: 25 November 2021

Next update: 25 November 2022

Change in sea catches 2019 - 2021

-27.2

Some surprises at the stock level!!

Biological insights (survival proxies in situ)

When we look (work ongoing) at the stock groups we see *in situ* important stock specific differences in performance that might affect survival ultimately

- Size at age
- Sex ratios
- Body condition
- Growth rates (acquired from scales)
- Feeding preferences
- Migration (swimming) speeds & distances covered

ICES Journal of Marine Science

ICES Journal of Marine Science (2021), 78(8), 2844-2857. https://doi.org/10.1093/icesjms/fsab163

Original Article

Poor feeding opportunities and reduced condition factor for salmon post-smolts in the Northeast Atlantic Ocean

Kjell Rong Utne ^{(0),*}, Beatriz Diaz Pauli², Monika Haugland³, Jan Arge Jacobsen⁴, Niall Maoileidigh⁵, Webjørn Melle¹, Cecilie Thorsen Broms¹, Leif Nøttestad¹, Marianne Holm¹, Katie Thomas⁴, and Vidar Wennevik¹

Feeding preferences

Biological (demographic) response (ecosystem variation)

HTL

4 Temperature ("C)

13

The challenges of going beyond the Vöring Plateau

The challenges

- Locate migration paths and feeding grounds (European perspective) for Norwegian and Iceland post smolts – (possible solution – spatial and temporal strategic sampling required)
- Determine distribution of older fish over entire life history (possible solution spatial and temporal strategic grid network of sampling stations)
- Fish are growing rapidly once reach a certain size not easy to catch in pelagic trawls
- Migratory behaviour starts to differentiate on basis of trait development (e.g. maturation schedules/sex) – higher resolution baselines (possible solution)

Excellent opportunistic studies

Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fishres

Fisheries Research 187 (2017) 110-119

Genetic stock identification of Atlantic salmon caught in the Faroese fishery

John Gilbey^{a,*}, Vidar Wennevik^b, Ian R. Bradbury^c, Peder Fiske^d, Lars Petter Hansen^d, Jan Arge Jacobsen^e, Ted Potter^f

Genetic stock identification reveals greater use of an oceanic feeding ground around the Faroe Islands by multi-sea winter Atlantic salmon.

Ronan James O'Sullivan1^{*}, Mikhail Ozerov², Geir H. Bolstad³, John Gilbey⁴, Jan Arge Jacobsen⁵, Jaakko Erkinaro⁶, Audun H. Rikardsen^{6,7}, Kjetil Hindar³, Tutku Aykanat¹,

CES

ICES Journal of Marine Science

ICES Journal of Marine Science (2021), doi:10.1093/icesjms/fsaa152

Range-wide genetic assignment confirms long-distance oceanic migration in Atlantic salmon over half a century

I. R. Bradbury 💿 ¹²*, S. J. Lehnert¹, A. Messmer¹, S. J. Duffy¹, E. Verspoor³, T. Kess¹, J. Gilbey⁴, V. Wennevik⁵, M. Robertson¹, G. Chaput⁶, T. Sheehan⁷, P. Bentzen², J. B. Dempson¹, and D. Reddin⁸

J. Gilbey et al./Fisheries Research 187 (2017) 110–119

New genetic markers / new baselines

What makes a MSW salmon?

LETTER

doi:10.1038/nature16062

Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon

Nicola J. Barson¹*, Tutku Aykanat²*, Kjetil Hindar³, Matthew Baranski⁴, Geir H. Bolstad³, Peder Fiske³, Céleste Jacq⁴, Arne J. Jensen³, Susan E. Johnston⁵, Sten Karlsson³, Matthew Kent¹, Thomas Moen⁶, Eero Niemelä⁷, Torfinn Nome¹, Tor F. Næsje³, Panu Orell⁷, Atso Romakkaniemi⁷, Harald Sægrov⁸, Kurt Urdal⁸, Jaakko Erkinaro⁷, Sigbjørn Lien¹ & Craig R. Primmer²

Jákupsstovu, S. H. I. (1988). Exploitation and migration of salmon in Faroese waters. In Atlantic Salmon: Planning for the Future (Mills, D. & Piggins, D., eds), pp. 458–482. London: Croom Helm.

Concluding remark

Genetic stock Identification (marker) and genetics/genomics (evolutionary aspects) with strategic sampling has a powerful (central) contribution to make to our understanding of migration and distribution of Atlantic salmon in the sea

 'Advances in understanding are most likely to be realised by integrating insights from genetic-based distributional and telemetric studies and, given their respective limitations, using them to develop, parameterize and test migrational models. This integration will be the most powerful way to help define future conservation management challenges and priorities' - from Gilbey et al. (2021). Fish & Fisheries.

